Natural language processing word2vec 속도 개선(2) 이제 개선된 CBOW 신경망 모델에 PTB 데이터셋을 사용해 학습 시키고, 단어의 분산 표현을 얻어보자. 한편 CBOW 클래스 출력 측 가중치는 입력 측 가중치와 같은 형상으로, 단어 벡터가 행 방향에 배치 된다. CBOW 모델 하이퍼파라미터 설정은 말뭉치에 따라 다르지만 보통 윈도우 크기는 2~10개, 은닉층의 뉴런 수는 50~500개 정도면 좋은 결과를 얻는다. 이처럼 word2vec으로... Negative samplingNLPgpuNatural language processingword2vecDeep LearningEmbeddingDeep Learning
word2vec 속도 개선(2) 이제 개선된 CBOW 신경망 모델에 PTB 데이터셋을 사용해 학습 시키고, 단어의 분산 표현을 얻어보자. 한편 CBOW 클래스 출력 측 가중치는 입력 측 가중치와 같은 형상으로, 단어 벡터가 행 방향에 배치 된다. CBOW 모델 하이퍼파라미터 설정은 말뭉치에 따라 다르지만 보통 윈도우 크기는 2~10개, 은닉층의 뉴런 수는 50~500개 정도면 좋은 결과를 얻는다. 이처럼 word2vec으로... Negative samplingNLPgpuNatural language processingword2vecDeep LearningEmbeddingDeep Learning